
Gaining Cross-Platform 
Parallelism for HAL’s Molecular
Dynamics Package using SYCL
September 16, 2023, PARS Workshop, Aachen

Viktor Skoblin1, Felix Höfling12, Steffen Christgau1

1Zuse Institute Berlin, 2Freie Universität Berlin



2Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Outline

 Motivation
 HAL’s MD package
 Choice of programming model
 Code Migration from C++/CUDA to SYCL
 Performance Evaluation
 Summary



3Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Motivation

 Molecular dynamics are important 
in classical statistical physics

 MD simulations demand 
resources, but can be parallelized

 Code and performance portability 
are important due to increasing 
vendor diversity in HPCs Image: https://www.researchgate.net/figure/Illustration-of-

periodic-boundary-condition-in-MD-simulation-This-figure-was-
created_fig5_344703503

Molecular Dynamics



4Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

HAL’s MD Package

Package overview
 High-precision molecular dynamics package

 Development started in 2007: early CUDA

 Focus on parallel execution on GPUs (NVidia)



5Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

HAL’s MD Package

 Written in C++14
 Collection of modules with Lua scripting interface
 Modules have CUDA and C++ STL backends: templated code for 

different dimensions and precisions
 CUDA backend exists for each module (4.3k lines of CUDA code)
 Different CUDA memory types are used
 CUDA code is separated from the host code by a custom 

wrapper

Technical details



6Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Choice of programming model
Available open standards

 OpenMP
➔ Higher level – less control

 OpenCL
➔ Based on C (boilerplate)
➔ Lacking vendor support

 SYCL
➔ Native C++
➔ Broad platform support

Image: https://www.khronos.org/sycl/



7Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Code Migration from C++/CUDA to SYCL

 Strategy 1: Migration with IntelDPC++ Compatibility Tool
 Intel DPC++ Compatibility Tool is designed to migrate 

existing CUDA codebase to SYCL
 Successful migration of the kernels __global__ functions
 Failed to migrate low-level API used for kernel invocations
 Problem: separation of host and device code in different 

compilation units



8Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Code Migration from C++/CUDA to SYCL

Strategy 2: Sequential Code to SYCL
 Simple algorithms are easier to port adapting the 

sequential code
 Data management:

 Shared allocations of Unified Shared Memory (USM)
 Double-buffering mechanism (copying the data if updated 

and needed)

 Migration module-by-module: non-migrated functions 
work, data flow is optimized



9Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Code Migration from C++/CUDA to SYCL

Strategy 3: Mixed
 More advanced algorithms can not be simply parallelized 

over the particles
 Utilize the migrated kernels and write the invocations 

manually
➔ Use Intel Compatibility Tool 

 Make changes to functional calls if needed



10Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Code Migration from C++/CUDA to SYCL

Utilized approaches
 Using manual and mixed strategies (2 and 3)
 Determine the kernels launch configurations in non-trivial 

cases as well as kernel dependencies
 Textures global memory

➔ Texture memory is better suited for uncoalesed memory 
accesses



11Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Code Migration from C++/CUDA to SYCL

Code Portability
 Code runs on CPU in parallel
 Code runs on different GPUs (AMD, Intel, NVIDIA)



12Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Performance Evaluation

Studied Cases

1)All-to-all interactions 

 Small system (N ~ 3K particles)

 Evaluated on CPU and GPU

2)Truncated interaction 

System of a realistic size (N ~ 100K particles)



13Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Performance Evaluation

 Vectorized AVX-512 code
 Can be executed in parallel
 Parallel execution shows good 

scaling speedups
 Average efficiency 0.84

Hardware: 6-core Intel Xeon W-2133 (Cascade Lake), 32 GB RAM; 
Software: Debian 11, icpx 2023.1, O3, mtune, enable vectorization 
and math optimization; MD: 2K particles, 5K steps

CPU performance: all-to-all interactions



14Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Performance Evaluation

 Runs on NVIDIA GPU faster than original 
CUDA version

 Runs on a comparable AMD GPU with 
comparable performance

GPU performance: all-to-all interactions

Hadrware: Nvidia A40 RTX 48GB, Nvidia A100 SXM4 80GB and AMD MI-210; Software: 
Original: CUDA 11.0.2; SYCL: LLVM 2022.09 + CUDA 11.7; MD: 2K particles, 20K steps



15Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Performance Evaluation

 Beneficial use of oneDPL for sorting on all 
GPUs

 Different code generation: lower utilization of 
FMA units

 Texture memory copes with unordered 
memory accesses => very limited support of 
SYCL images in Intel LLVM runtime

Hardware: Nvidia A40 RTX 48GB; Software: Original: CUDA 11.0.2; SYCL: Open-source 
Intel LLVM 2022.09 + CUDA 11.7; MD: 100K particles, 50K steps

GPU performance: truncated interactions



16Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Summary

 Achieved code portability for HAL’s MD Package
 Different migration strategies need to be considered
 Performance varies from case to case due to evolving compiler 

and runtime



17Viktor Skoblin: Gaining Cross-Platform Parallelism for HAL’s Molecular Dynamics Package using SYCL

Summary

 Achieved code portability for HAL’s MD Package
 Different migration strategies need to be considered
 Performance varies from case to case due to evolving compiler 

and runtime

Thanks for your attention!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

