
Representing Execution Variations
in Parallel Communication Protocols

Peter Sobe

Dresden University of Applied Sciences
Faculty of Computer Science and Mathematics

29th PARS Workshop, Aachen, September 2023

1 / 24

Contents

1 Parallel Communication Protocols

2 Expressing Variations of Message Transfer

3 Allreduce Communication Scheme

4 Summary

2 / 24

Parallel Communication Protocols

Communication phases as specific parts of parallel executions
processes

tim
e

input data and parameter distibution

temporary result exchange, border value exchange

result aggregation

co
m

pu
te

co
m

pu
te

well-known communication patterns (protocols)
designed to transfer messages in parallel and to run fast
adapted, evaluated and compared for different assumptions
(network properties, programming interface)

3 / 24

Parallel Communication Protocols

Crossing messages

exploit the bidirectional nature of communication links
are good for parallelism
purely present in a 2-process cross communication and also in a
ring-wise neighbour transfer (P>2 processes).

send send

recv recv

2-process cross communication

send send send

recv

P-process neighbour transfer

0 1 2i j

recv recv

However, it depends on other factors whether messages are
transferred in parallel, transferred consecutively or not at all due to a
deadlock.

4 / 24

Parallel Communication Protocols

Resolving cross communication

cross communication cause a deadlock when communication
operations block
cross communication can be resolved by separating message
transfer in several rounds.
rounds are executed in consecutive order, independently of
blocking or non-blocking communication.
the P process neighbour exchange requires one extra round in the
protocol description (program) and possibly gets serialized
stepwise in further rounds by resolving dependencies at execution
time.

5 / 24

Parallel Communication Protocols

Protocols with resolved cross communication

send

send

recv

recv

2-process communication

send send

send

recv

recv recv

P-process neighbour transfer
0i j 1 2

6 / 24

Parallel Communication Protocols

Example: P = 3 process neighbour transfer

assuming non-blocking transfer,
the protocol runs in 2 rounds:
round 0: 0 → 1, 1 → 2 in parallel
round 1: 2 → 0

When message transfer blocks,
the protocol runs in 3 rounds:
round 0: 1 → 2
round 1: 0 → 1
round 2: 2 → 0

send send

send

recv

recv recv

0 1 2

round 1

round 2

send

send

send

recv

recv

recv

0 1 2

round 1

round 3

round 2

7 / 24

Expressing Variations of Message Transfer

Protocols with the same general concept can be implemented in
different ways

exploiting or avoiding cross communication
using synchronous send/recv or asynchronous operations,

. . . and produce different executions at run time
depending on blocking behaviour of communication network

Questions:
can this be expressed in graphical representations of the
protocols, without only showing a selected variant?
is there any systematic classification of variants and their
circumstances?

8 / 24

Expressing Variations of Message Transfer

Classification:

Type 1 (least restictive, deadlock-prone):
Relying on buffering and non-blocking msgs,
even in case of cross communication

Type 2 (less restrictive, deadlock safe):
Resolved cyclic dependencies,
but taking advantage from non-blocking
transfers, rendezvous not required

Type 3 (most restrictive):
Fully predefined message order,
rendezvous forced by implementation
(parallel transfers still possible)

send send

recv
recv recv

0 1 2

send send

send

recv

recv recv

0 1 2

send

send

send

recv

recv

recv

0 1 2

send

9 / 24

Expressing Variations of Message Transfer

Graphical Representation

Messages are tagged with round numbers, in case it can be
decided
Otherwise messages are tagged with tupels, representing the
earliest round and the latest round in an execution
Type 1 protocols (deadlock prone) tagged additionally with ’?’ as
postfix of the round number - it means that messages are possibly
never transferred

10 / 24

Graphical Representation

Type 1 protocols: tagging with round number and ‘?’

send

recv recv

2-process cross communication

recv recv recv

0 1 2i j

1?1? 1?1? 1?

send

recv recv recv

1?1? 1?
send

send send send

recv recv recv

2?2? 2?

neighbour transfer with repetitions

P-process neighbour transfer

send send send send

send

11 / 24

Graphical Representation

Type 2 protocols: tagging with earliest and latest possible round

send

send

recv

recv

2-process communication P-process neighbour transfer

1,1

2,2

1,2

2,3

1,1

1,11,21,3

2,4

2,5
recv

2,6 4,6

3,5

P-process neighbour exchange (2 directions, P=4)

1,1

1,2

send send

send

send

send

send send send

send

send

send
sendsend

recv

recv

recv recv

recv

recv

recv

recv
recv recv

recv recv

seqential broadcast

12 / 24

Graphical Representation

Type 3 protocols: tagging with round number

send

recv

2-process communication P-process neighbour transfer

1

2

1

3

2

1 1

2
2

3

3

4
4

P-process neighbour exchange (2 directions, P=4)

send

send

send

send

send

send

send

send

send
send

send

recv

recv

recv

recv

recv

recv

recv

recv

recv

recv

recv

13 / 24

Allreduce Communication Scheme

we apply the type schema and the graphical representation to the
allreduce communication scheme (MPI_Allreduce)

1st step:
handling reduce and broadcast separately

2nd step:
folding reduce and broadcast into another

Questions:
Does the representation scheme allows a better understanding?
Is the folded protocol beneficial over a subsequent execution of
reduce and broadcast?

14 / 24

Allreduce Communication Scheme

epsilon=1.0e-8;
global_delta = 1; // start value

while (global_delta > epsilon)
{ local_delta = 0.0;

exchange_overlaps(U, upper, lower);
for (int row = r.start_row; row <= r.end_row; row++)
{

int i = row - start_row;
for (int col = start_column; col <= end_column; col++)
{

int j = col - range.start_column;
double Uold = U[i][j];
if (i>0 && i < end_row - start_row)

U[i][j] = 0.25 * (U[i][j + 1] + U[i][j - 1] + U[i - 1][j] + U[i + 1][j]);
else
{ if (i==0) // upmost row of local area

U[i][j] = 0.25 * (U[i][j + 1] + U[i][j - 1] + upper[j] + U[i + 1][j]);
else // last row

U[i][j] = 0.25 * (U[i][j + 1] + U[i][j - 1] + U[i - 1][j] + lower[j]);
}
local_delta = max (local_delta, fabs (Uold - U[i][j]));

}
}
// ###
MPI_Allreduce(&local_delta, &global_delta, 1, MPI_DOUBLE, MPI_MAX, comm);
// ###

}

15 / 24

Allreduce Communication Scheme

reduce
reduce gathers values from all processes and calculates a result
value that arrives at a distinguished process (root process).
one common operation (OP), for example a sum.
type 3 protocol: parallelism present, acyclic data dependencies,
acyclic communication patterns

graphical representation of a reduce operation for p=8 processes and
the root process 0:

0 1 2 3 4 5 6 7

OP

OP

OP

OP OP OP

OP

1 1 11

2 2

3

16 / 24

Allreduce Communication Scheme

broadcast
a broadcast distributes a value (also entire data structures in a
serialised form) onto a group of processes.
parallel broadcast algorithm: recursive doubling
type 3 protocol: parallelism present, acyclic data dependencies,
acyclic communication patterns
type 2 protocol: possible due to earlier send operations, w/o
waiting for rendezvous

recursive doubling for p=8 processes:
0 1 2 3 4 5 6 7

1,1

2,21,2

1,3 2,3 2,3 3,3

17 / 24

Folding of Reduction and Broadcast

Folding reduce and broadcast for p=2:

OP

reduce phase
0 1

1

2

0
1

OP OP

1? 1?

0 1

OP

2

1

using crossing messages resolved cyclic dependencies,
rendezvous provided

0 1

OP

2,2

1,1

type 1
type 2 type 3

broadcast phase

18 / 24

Folding of Reduction and Broadcast

Folding reduce and broadcast for p=4:

OP

reduce phase
0 1

1

3

broadcast phase

using crossing messages

OP

1

2

OP

4 4

2 3

1?1?1?1?

2?

2?

2?

2?

type 1

OP

unmodified sequence of
reduce and broadcast:

type 3 protocol

OP OP OP

OP OP OP OP

19 / 24

Folding of Reduction and Broadcast

Folding reduce and broadcast for p=4:

OP

reduce phase
0 1

1

3

broadcast phase

resolving cross communications and overlapping
with next round

OP

1

2

OP

4 4

2 3

1,1

type 2

OP OP

OP OP

1,1

2,2 2,2
2,32,3

3,43,4

20 / 24

Folding of Reduction and Broadcast

Folding reduce and broadcast for p=8:

OP

reduce phase
0 1

1

5

broadcast phase

OP

1

2

OP

66

2 3

OP

4 5

1

OP

1

2

OP

6 7

3

5

6

4

OP

0

OP OP OP

using crossing messages

type 1

OP OP OP OP

1?

2?

1?

2?

3? 3?

OP

OP

OP

OP

unmodified sequence of
reduce and broadcast

type 3 protocol

6

OPOPOPOPOPOP

OP OPOPOPOPOP

21 / 24

Folding of Reduction and Broadcast

Folding reduce and broadcast for p=8:

OP

reduce phase
0 1

1

5

broadcast phase

OP

1

2

OP

6 6

2 3

OP

4 5

1

OP

1

2

OP

6 7

3

5

6 6

4

resolving cross communication and
overlapping with next round

type 2

1,11,1 1,11,1

3,4

2,3

2,2 2,2

2,3

3,5

3,5

3,5

3,4

3,4

4,6
4,6 4,6

2,2 2,3

1,1

OP OP OP OP

OP OP OP OP

OP OP OP OP

22 / 24

Folding of Reduction and Broadcast

Comparison with p as number of processes
(p is power of 2)

folded allreduce
reduce broadcast type 1 type2 type 3

protocol log2(p) log2(p) log2(p) min: log2(p) + 1 2 · log2(p)
rounds max: 2 · log2(p)

messages p − 1 p − 1 p · log2(p) p · log2(p) 2 · (p − 1)

OPs p − 1 0 p · log2(p) p
2 · log2(p) p − 1

23 / 24

Summary
We studied the parallelism of message transfers during
communication phases and how this can be illustrated.

Classification of protocol types:
type1 (least restrictive, deadlock-prone),
type2 (less restrictive, deadlock safe),
type3 (most restrictive, rendezvous forced)

Message numbering principle, correlated to protocol rounds

In particular the allreduce communication pattern was studied

Allreduce: reduction and broadcast phases are fold together,
this allows more parallelism than a sequence of reduction and
broadcast (but also more messages and more OPs)

24 / 24

	Parallel Communication Protocols
	Expressing Variations of Message Transfer
	Allreduce Communication Scheme
	Summary

